16 research outputs found

    Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices

    Get PDF
    Using human embryonic, adult and cancer stem cells/stem cell-like cells (SCs), we demonstrate that DNA replication speed differs in SCs and their differentiated counterparts. While SCs decelerate DNA replication, differentiated cells synthesize DNA faster and accumulate DNA damage. Notably, both replication phenotypes depend on p53 and polymerase iota (POLι_{ι}). By exploring protein interactions and newly synthesized DNA, we show that SCs promote complex formation of p53 and POLι_{ι} at replication sites. Intriguingly, in SCs the translocase ZRANB3 is recruited to POLι_{ι} and required for slow-down of DNA replication. The known role of ZRANB3 in fork reversal suggests that the p53–POLι_{ι} complex mediates slow but safe bypass of replication barriers in SCs. In differentiated cells, POLι_{ι} localizes more transiently to sites of DNA synthesis and no longer interacts with p53 facilitating fast POLι_{ι}-dependent DNA replication. In this alternative scenario, POLι_{ι} associates with the p53 target p21, which antagonizes PCNA poly-ubiquitination and, thereby potentially disfavors the recruitment of translocases. Altogether, we provide evidence for diametrically opposed DNA replication phenotypes in SCs and their differentiated counterparts putting DNA replication-based strategies in the spotlight for the creation of therapeutic opportunities targeting SCs

    MatriGrid® based biological morphologies: tools for 3D cell culturing

    Get PDF
    Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid ® s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account

    Functional video-based analysis of 3D cardiac structures generated from human embryonic stem cells

    No full text
    Human embryonic stem cells (hESCs) differentiated into cardiomyocytes (CM) often develop into complex 3D structures that are composed of various cardiac cell types. Conventional methods to study the electrophysiology of cardiac cells are patch clamp and microelectrode array (MEAs) analyses. However, these methods are not suitable to investigate the contractile features of 3D cardiac clusters that detach from the surface of the culture dishes during differentiation. To overcome this problem, we developed a video-based motion detection software relying on the optical flow by Farnebäck that we call cBRA (cardiac beat rate analyzer). The beating characteristics of the differentiated cardiac clusters were calculated based on the local displacement between two subsequent images. Two differentiation protocols, which profoundly differ in the morphology of cardiac clusters generated and in the expression of cardiac markers, were used and the resulting CM were characterized. Despite these differences, beat rates and beating variabilities could be reliably determined using cBRA. Likewise, stimulation of β-adrenoreceptors by isoproterenol could easily be identified in the hESC-derived CM. Since even subtle changes in the beating features are detectable, this method is suitable for high throughput cardiotoxicity screenings

    Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells.

    No full text
    Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes via embryoid body formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time the number of beating embryoid bodies derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable to develop along the cardiac lineage albeit with considerable delay. Reduced embryoid body size, failure to downregulate pluripotency markers and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion particle irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays

    Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors

    No full text
    Exposure of the embryo to ionizing radiation (IR) is detrimental as it can cause genotoxic stress leading to immediate and latent consequences such as functional defects, malformations, or cancer. Human embryonic stem (hES) cells can mimic the preimplantation embryo and help to assess the biological effects of IR during early development. In this study, we describe the alterations H9 hES cells exhibit after X-ray irradiation in respect to cell cycle progression, apoptosis, genomic stability, stem cell signaling, and their capacity to differentiate into definitive endoderm. Early postirradiation, hES cells responded with an arrest in G2/M phase, elevated apoptosis, and increased chromosomal aberrations. Significant downregulation of stem cell signaling markers of the TGF beta-, Wnt-, and Hedgehog pathways was observed. Most prominent were alterations in the expression of activin receptors. However, hES cells responded differently depending on the culture conditions chosen for maintenance. Enzymatically passaged cells were less sensitive to IR than mechanically passaged ones showing fewer apoptotic cells and fewer changes in the stem cell signaling 24 h after irradiation, but displayed higher levels of chromosomal aberrations. Even though many of the observed changes were transient, surviving hES cells, which were differentiated 4 days postirradiation, showed a lower efficiency to form definitive endoderm than their mock-irradiated counterparts. This was demonstrated by lower expression levels of SOX17 and microRNA miR-375. In conclusion, hES cells are a suitable tool for the IR risk assessment during early human development. However, careful choice of the culture methods and a vigorous monitoring of the stem cell quality are mandatory for the use of these cells. Exposure to IR influences the stem cell properties of hES cells even when immediate radiation effects are overcome. This warrants consideration in the risk assessment of radiation effects during the earliest stages of human development

    Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transcript and protein level. Treatment of ES cells with high concentrations of activin A for 10 days resulted in up to 19% Sox17-positive cells selected by FACS. Isolated Sox17-positive cells were characterized by defini- tive endoderm-specific Sox17/Cxcr4/Foxa2 transcripts, but lacked pluripotency-associated Oct4 mRNA and protein. The Sox17-expressing cells showed downregulation of extraembryonic endoderm (Sox7, Afp, Sdf1)-, mesoderm (Foxf1, Meox1)- and ectoderm (Pax6, NeuroD6)-specific transcripts. The presence of Hnf4α, Hes1 and Pdx1 mRNA demonstrated the expression of primitive gut/foregut cell-specific markers. Ngn3, Nkx6.1 and Nkx2.2 transcripts in Sox17-positive cells were determined as properties of pancreatic endocrine progenitors. Immunocytochemistry of activin A-induced Sox17-positive embryoid bodies revealed coexpression of Cxcr4 and Foxa2. Moreover, the histochemical demonstration of E-cadherin-, Cxcr4-, Sox9-, Hnf1β- and Ngn3-positive epithelial-like structures underlined the potential of Sox17-positive cells to further differentiate into the pancreatic lineage. By reducing the heterogeneity of the ES cell progeny, Sox17-expressing cells are a suitable model to evaluate the effects of growth and differentiation factors and of culture conditions to delineate the differentiation process for the generation of pancreatic cells in vitro.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    A Human 3D Cardiomyocyte Risk Model to Study the Cardiotoxic Influence of X-rays and Other Noxae in Adults

    No full text
    The heart tissue is a potential target of various noxae contributing to the onset of cardiovascular diseases. However, underlying pathophysiological mechanisms are largely unknown. Human stem cell-derived models are promising, but a major concern is cell immaturity when estimating risks for adults. In this study, 3D aggregates of human embryonic stem cell-derived cardiomyocytes were cultivated for 300 days and characterized regarding degree of maturity, structure, and cell composition. Furthermore, effects of ionizing radiation (X-rays, 0.1–2 Gy) on matured aggregates were investigated, representing one of the noxae that are challenging to assess. Video-based functional analyses were correlated to changes in the proteome after irradiation. Cardiomyocytes reached maximum maturity after 100 days in cultivation, judged by α-actinin lengths, and displayed typical multinucleation and branching. At this time, aggregates contained all major cardiac cell types, proven by the patch-clamp technique. Matured and X-ray-irradiated aggregates revealed a subtle increase in beat rates and a more arrhythmic sequence of cellular depolarisation and repolarisation compared to non-irradiated sham controls. The proteome analysis provides first insights into signaling mechanisms contributing to cardiotoxicity. Here, we propose an in vitro model suitable to screen various noxae to target adult cardiotoxicity by preserving all the benefits of a 3D tissue culture
    corecore